A Simple Proof of Cohen's Theorem
Author(s): A. R. Naghipour
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/30037605
Accessed: 08/03/2010 10:40

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
A Simple Proof of Cohen’s Theorem

A. R. Naghipour

Let M be a module over a commutative ring R. Then M is called a Noetherian module if every submodule of M is finitely generated, and R is called a Noetherian ring if it is a Noetherian module over itself. Cohen proved that a commutative ring R is Noetherian if and only if every prime ideal in R is finitely generated (see, for example, [1] or [3]). Jothilingam has recently given a generalization of Cohen’s theorem for modules:

Theorem. Let R be a commutative ring and M a finitely generated R-module. Then M is Noetherian if and only if the submodule pM is finitely generated for every prime ideal p of R.

By adapting the argument in [2], we will give a simple proof for this theorem, one that doesn’t require the theory of associated prime ideals. We remind the reader that for an R-module M the set $\{r \in R : rM = 0\}$ is called the annihilator of M and is denoted by $\text{Ann}(M)$.

Proof. Suppose that M is not Noetherian. By Zorn’s Lemma there exists a proper submodule N of M that is maximal among the nonfinitely generated submodules of M. We first show that $\text{Ann}(M)/N = p$ is a prime ideal. Suppose that ab belongs to p, but that neither a nor b is in p. Then $N + aM$ and $N + bM$ are both finitely generated. Assume that $\{n_i + am_i\}_{i=1}^\ell$ is a set of generators $N + aM$, where n_i is in N and m_i in M. Put $L = \{m \in M : am \in N\}$. It is easy to see that L is a submodule of M containing both N and bM. By the maximality of N, L is finitely generated. We show that

$$N = \sum_{i=1}^\ell Rn_i + aL.$$
Consider \(y \in N \). Since \(y \) belongs to \(N + aM \), there exist \(b_1, \ldots, b_\ell \) in \(R \) such that
\[
y = \sum_{i=1}^{\ell} b_i(n_i + am_i) = \sum_{i=1}^{\ell} b_in_i + a\sum_{i=1}^{\ell} b_im_i.
\]
This means that \(a\sum_{i=1}^{\ell} b_im_i \) lies in \(N \), whence \(y \) is a member of the ideal
\[
\sum_{i=1}^{\ell} Rn_i + aL.
\]
Since the other inclusion is trivial, we get \(N = \sum_{i=1}^{\ell} Rn_i + aL \). It follows that \(N \) is finitely generated, which contradicts the definition of \(N \). Therefore \(p \) is a prime ideal.

Since \(M \) is finitely generated, we have \(M/N = R\overline{x_1} + \cdots + R\overline{x_t} \) for some \(x_1, \ldots, x_t \) in \(M \), where \(\overline{x} \) signifies the equivalence class of \(x \) in \(M/N \), hence \(p = \bigcap_{j=1}^{t} \text{Ann}(R\overline{x_j}) \). Because \(p \) is a prime ideal, \(p = \text{Ann}(R\overline{x_j}) \) for some \(j \). Suppose that the set \(\{y_i + r_ix_j\}_{i=1}^{k} \) generates \(N + Rx_j \), where \(y_i \) is in \(N \) and \(r_i \) in \(R \). By an argument similar to the earlier one, we have \(N = \sum_{i=1}^{k} Ry_i + px_j \). Since \(pM \) is contained in \(N \), we obtain
\[
N = \sum_{i=1}^{k} Ry_i + px_j \subseteq \sum_{i=1}^{k} Ry_i + pM \subseteq \sum_{i=1}^{k} Ry_i + N \subseteq N.
\]
It follows that \(N = \sum_{i=1}^{k} Ry_i + pM \) is a finitely generated submodule of \(M \), a contradiction to the choice of \(N \). Thus \(M \) is a Noetherian module. The converse is clear.

REFERENCES

Department of Mathematics, Shahre-Kord University, P.O. Box: 115, Shahre-Kord, IRAN
arnaghip@ipm.ac.ir